
Journal of Applied Mechanics and Technical Physics, Vol. 39, No. I, 1998 

S T A B I L I T Y  O F  C O N V E C T I V E  F L O W S  IN A R O T A T I N G  L I Q U I D  

L AYER U N D E R  V A R I O U S  H E A T I N G  C O N D I T I O N S  

B. L. S m o r o d i n  UDC 532.5 

For a rotating liquid layer with boundaries of low thermal conductivity, an amplitude equation 
is obtained that describes the evolution of secondary convective flows in uniform heating and 
above a hot spot. The dependence of the coefficients of the amplitude equation on the rotation 
parameter, Prandtl number, and heat-flux nonuniformity is obtained. The influence of rotation 
on the stability of nonlinear regimes is analyzed for uniform heating. The boundaries of flow 
stability are investigated for variously shaped hot spots. 

In a horizontal liquid layer with fixed boundaries of low thermal conductivity, instability of the 
equilibrium of the liquid under uniform heating is associated with longwave perturbations [1]. Nonlinear, 
steady, spatially periodic, two-dimensional convection regimes in such a layer are considered in [2] for small 
values of supercritical heating. Investigation of flows that arise is based on expansion in the small parameter 
e, which is the ratio of the layer thickness h to the characteristic horizontal size of convective structures L. 
(~ = h/L.). In the case of nonuniform heating, equilibrium of the liquid is impossible, and flow arises. If the 
horizontal scale of heating nonuniformity (a hot spot) is large, the scale of the induced flows is also large. Hence, 
it is possible to conduct investigations in the longwave limit using expansion in the small parameter e. The 
stability of convective flows induced by nonuniform heating is investigated by Lyubimov and Cherepanov [3]. 

Rotation of a liquid layer gives rise to convective instability of equilibrium of the liquid by a short- 
wave mechanism [4]. Because of competition of the two mechanisms, in the case of fast rotation of a liquid 
layer with heat-insulated boundaries, cellular perturbations become dangerous, and at rather low rotation 
velocities, longwave instability is realized [5]. 

In the present paper, we study the stability of longwave convective flows in a rotating horizontal liquid 
layer with boundaries of low thermal conductivity under uniform and nonuniform heating. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  Case of  U n i f o r m  Hea t ing .  Let a horizontal liquid layer of 
density p0 rotate at constant angular velocity f~ about a vertical axis. On the boundaries of the layer, we 
specify a stationary uniform heat flux Q = ae OT/Oz, where ze is the thermal conductivity of the liquid. We 
study the occurrence of convection in a coordinate system attached to the layer. The z axis of the Cartesian 
system is directed vertically upward, the coordinates of the boundaries are z = +hi2, and the x and y axes 
are located in the plane of the layer. 

Centrifugal convective forces are ignored in comparison with gravitational forces. This is justified in 
the case where the horizontal scale of convective structures satisfies the condition 

L << L0 = g/f'l 2, (1.1) 

where 9 is the free-fall acceleration. 
For the atmosphere, f~ ,,, 7- 10 -5 sec -1 and L0 "~ 2.106 km, while the size of a tropical cyclone is 

L ~, 1500 km [6]. In experimental modeling of large-scale eddies [7], L0 "-' 80 m corresponds to the highest 
rotation frequency f~ --, 0.4 sec -1, and the size of the model and the observed structure is L ,-- 0.3 m. Thus, in 
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the atmosphere and in experiments modeling atmospheric phenomena, large-scale structures satisfy relation 
(1.I). 

Let us consider weakly nonlinear convection regimes that result from the evolution of convective waves 
[the flow characteristics do not depend on y (cg/Oy = 0)]. In the case of fixed heat-conducting boundaries, 
supercritical convective regimes in the form of billows [8] can occur far from the lateral walls of a laboratory 
model. On the other hand, in a layer with a free upper boundary and a fixed lower boundary of low thermal 
conductivity, the linear theory of convective stability for billows [9] and the experiment of [10] are in good 
agreement. 

We use h, h2/x, x /h ,  X, and Qh/ae as units of length, time, velocity, stream function, and temperature. 
respectively, and write the convection equation in a rotating coordinate system in dimensionless form: 

10Ak~ 1 [Oql OAk~ O~ OA@] OT Ov, 
Pr Ot +~rr[~zz ~zz ~z  ~ z  J = A 2 ~ - R a ~ x + D ~ z z  

l Ov l [O~l Ov Or Ov] O~ OT O~ [O~ OT O~ OT] 
Bra t  F~r[-~z Ox Ox -~z = A v - D  Oz' at +-~x + ~z  ox ox ~z =AT,  (1.2) 

Ra = gflQh4/vxae, D = 2flh2/v, Pr = v/X. 

Here ~/is the stream function, v is the liquid velocity along the y axis, T is the deviation of the temperature 
from the equilibrium value, Ra is the Rayleigh number, Pr is the Prandtl number, D is a parameter that 
describes the rotation velocity of the liquid, /3, X, and v are the thermal-expansion coefficient, thermal 
diffusivity, and kinematic viscosity of the liquid. 

The boundary conditions are of the form 

1 0~1 OT 
0 z = ~  v = 0 ,  0 - -7=~  (1.3) 

According to the linear theory of the stability of the equilibrium of a rotating liquid layer with heat- 
insulated boundaries [5], the rotation velocity of the layer determines the type of critical perturbation and 
the convection threshold Ra0 = Ra0(D). In the case of rather slow rotation (D < D. ~ 43), longwave 
perturbations increase. In fast rotation, instability is related to cellular perturbations. In the longwave case 
at Ra > Ra0, perturbations with wave numbers in the interval [0; k.] increase. Here k. = 27r/L. is the 
wave number that corresponds to the critical value of Ra. For small values of Ra - Ra0, the value of k. ~- 
(Ra - Ra0) 1/2 is small, and longwave asymptotic relations can be used. In this case, if the scale L. << L0 of 
(1.1), the centrifugal force in the flow equation can be ignored. 

We change the horizontal scale using the small parameter e = 1/L.: 

0 0 
xn = ~x, 0"~ = e Oxn" (1.4) 

Below, the subscript n of the horizontal coordinate is dropped. 
We study processes of various temporal scales using the method of multiple scales [11]. The functions 

~/, v, and T are assumed to depend on the set of variables tn = er't (n = 0, 1, 2 , . . . ) .  In this case, the derivative 
with respect to time is 

0 oo 0 
= 

n=O Otn " 

It can be shown that the differentiation operator, as in [2, 3], begins with the fourth order of smallness. We 
expand ~, v, T, and the parameter Ra in series in s: 

Ra = = = e , ,  v ~ e " v , ,  T ~ ~nT,. (1.6) 
n = 0  n=0  n : 0  n = 0  
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Substituting series (1.4)-(1.6) into (1.2) and (1.3), we obtain systems of differential equations in various orders 
of expansion in e. We require boundedness of solutions as t ~ r162 and z ~ + ~ .  

In zero order, we have ~0 = 0 and v0 = 0, and the temperature To(z) does not depend on the transverse 
coordinate z. In the first order of perturbation, the temperatures are also independent of z: T1 = TI(z), and 
for $1 and vl we have 

r = -RaoTo=fl(z), vl = -RaoTo~:f2(z), (1.7) 

where 

/1(z)  = a (cos ~1~ - cos ~ 1 2 )  + b (cos ~2~ - cos ~2/2); 

f~ = a(D/)q) sin Alz + b(D/A2)sin ~2z - z/D; a = iA2/[4D 2 sin(~l/2)]; b = a*; 

AI,2 = ~ are roots of the equation A 4 + D 2 = 0; the asterisk and the subscript z denote complex 
conjugation and a derivative with respect to the horizontal. 

In second order, we have 

�9 ~ = -R~oTl,f~(z), ~2 = - R ~ T l , f 2 ( z ) ,  

T2 = -To:~ [~-(1 +Raoe) - Rao Ai 2 -t- AI J] - R a~176 [' A'l'l t As 

Here e = -Im(Alcot(J2/2))/2D 2 (Im is the imaginary part). Satisfying the boundary conditions for the 
temperature, we write 

Rao = D2Rd, Rd = 2/[Im(Alcot(A2/2)) - 2]. (1.9) 

The equations for @3, v3, T3 are cumbersome and are not given here. In fourth order we obtain the 
following differential equation for the temperature: 

OTo ! ! 
T~' = - T 2 , ,  + ~3,  + ~2TI, + r - ~ 1 = ~  + 

0t4" 
Integrating this equation across the layer yields the following equation for the evolution of perturbations 
for To: 

OTo .04To Rag. O2To B O ( (aTo)3)  
.at + a ~ + Rao az 2 ~ t t - ~ z  / / = 0. (1.10) 

Linearizing Eq. (1.10), for neutral perturbations we obtain Ra2 = ARa0. 
The evenness of the eigenfunctions of the problem in various orders of expansion leads to the fact that 

the coefficients A and B depend only on the rotation parameter D: 

A = (7 + 5P~)(sin d - sinh d) _ (3 + Rd)(1 - cos d cosh d) Ra + 1 
64dS(coshd-cosd) 32d4(1 -2cosdcoshd+O.5(cos2d+cosh2d))  48d 4 ' 

d2 2 (  3 s inds inhd  5 ( s i n d + s i n h d )  coshd+cosd '~  
B = u nd t ( c o T f f g -  2g~o~ -~)2 - 2d(cosh d - cos d) + cosh d - cos dS" 

Here d = (D/2) 1/2. 
For D = 0, the values of the coefficients A and B are determined in [2]: A = A0 = 17/462, B = 10/7, 

and Ra2 = 2040/77. With increase in the rotation velocity D, the coefficient A and, hence, Ra2 decrease 
monotonically, reaching zero for D = D, = 43.5, and the coefficient of the nonlinear term B decreases slowly. 
changing in the interval of interest (D < D,)  by 4%. The value of D, obtained by numerical~ analysis of 
the stability of the equilibrium is somewhat lower: D, = 42 [5]. To construct the amplitude equation that 
describes secondary convective flow.~ for D = D,,  it is necessary to consider higher-order expansions in ~. We 
shall study only the case D < D, and use Eq. (1.10), which, in the new scales t = r /A  and To = O(AiB) ~/'- 
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is written as 

0-"t" + ~ z  4 + ax ----~ az  L~, ) ) ~ z  = 0. (1.11) 

According to (1.7), the derivative cgO/az = N defines the convective flow intensity. In the steady case. 
a/aT- = 0, and instead of (1.11) we obtain 

a3N cgN ON a 
Ox ----T + 0---~ 0--~ = 0. (1.12) 

Using N~ as an integrating factor, we write solution (1.12) in the form of a Jacobi elliptic function: 

N = \1 + s 27 sinh[(1 + sZ)-l/2x]. (1.13) 

The modulus of the elliptic function s is found using the periodicity condition in the absence of a mean 
horizontal heat flux: 

s 

N(z  + L) = N(x), ] Ndx = O. 
0 

It is related to the size of convective structures L by the relation L = 4K(s)-v/i- + s 2, where K(a) is a complete 
elliptic integral of the first kind. An increase in the convective-cell size L is accompanied by an increase in 
the amplitude of the convective flow N: N ~ 1 as L --* oo. 

An analysis of the  stability of two-dimensional, spatially periodic, secondary flows in a motionless layer 
with heat-insulated boundaries against normal perturbations of the form N(x)  exp ( - a 0 r )  [2] has shown that 
all such flows are unstable: a0 < 0. Here a0 is the increment of perturbations in a liquid at rest. The equation 
for the evolution of perturbat ions in a rotating layer can be reduced to the case of rest by transformation 
of scales. Taking into account that  t = r/Ao for D = 0 and t = r /A  for D ~ 0, we obtain the following 
relation between the per turbat ion increments for rotating and motionless liquid layers: a = aoAo/A. Since 
the coefficient A in the longwave region is positive, all two-dimensional spatially periodic flows of type (1.13) 
in a rotating layer are unstable (a  < 0). 

2. Case  o f  N o n u n i f o r m  H e a t i n g .  We examine the case of weakly nonuniform heating. The 
nonuniformity of heating is considered a second-order infinitesimal. This yields closed equations for the 
evolution of tempera ture  perturbations 0. The boundary conditions for the temperature  can be rewritten 
as z = =1=1/2: OT/cgz = e2q(x), where q(x) is the deviation of the heat flux from the average value measured in 
units of Q. A value q < 0 corresponds to a heat flux above the critical value in the case of uniform heating. The 
change in the boundary conditions leads to the appearance of the additional term (T2 + qz) for second-order 
temperature perturbat ions in (1.8). As a result, the type of equation for 0 changes: 

o--T + 0x - - i  0x + = 0. (2.1) 

We examine the stability boundary of perturbations (O/Ot = 0) for various types of heating 
nonuniformity. Integrating the linearized equation (2.1) and taking into account the at tenuation of N at 
infinity, we obtain 

02N 
Oz ~ q(z)N = 0. (2.2) 

Let the function q(z) have the form of a step and the heat flux exceed the critical value in a bounded 
region: 

I x l < t ,  q(z) 
t "r 2, I z l > l .  
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The solution of Eq. (2.2) for the given hot spot is of the form 

N = c l  cosTx(x< l ) ,  N = c 2 e x p ( - T x ) ( x > l ) .  

Requiring continuity of N and ON/cgx on the boundary of the hot spot (z = 1), we determine the 
stability boundaries in the plane of the parameters l and 7:71 = r /4  + ~'n (n = 0, 1, 2 . . . ) .  The stability 
region lies between the first hyperbola (n = 0) and the axis 7 = 0. The lower the degree of superheating 7, 
the larger the size of the hot spot l that causes instability. 

The equation for the horizontal heat flux N (2.2) with a square hot spot q(z) = qo(x 2 - 1) (q0 > 
0) reduces to the problem of a quantum-mechanical oscillator. The eigenvalue of the parameter q0 that 
corresponds to the first level of instability is equal to unity. For q0 < 1, the solution related to heat-flux 
nonuniformity is steady and 0 ~ 0. The solution that describes the horizontal heat flux N on the stability 
boundary (q0 = 1)is of the form N = exp (-x2/2). 

For the hot spot q(x) = 72(sinh27x - 1)/(cosh27x), which has a minimum at x = 0 and is damped 
as 72 at infinity, the solution can be found using an analogy with the SchrSdinger equation with a modified 
Peshl-Teller potential [12]. For the quantity N, we have solutions of the soliton type: 

N = C/(coshTx). (2.3) 

In this case, 0(x) = (C/7)arctan sinhTx. The amplitude of the soliton C is an arbitrary constant. 
The nonlinear stationary equation for the horizontal heat flux 02N[Ox 2 - q(x)N - N 3 = 0 also has the 

soliton solution (2.3), but the form of the hot spot must be different: q(x) = (72 sinh 2 7x - h2)/(cosh 2 7z). In 

this case, the amplitude of the soliton (2.3) is completely determined by C = V/~ - 72. 
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 

00389). 
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